Superconvergence of immersed finite element methods for interface problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence of immersed finite element methods for interface problems

In this article, we study superconvergence properties of immersed finite element methods for the one dimensional elliptic interface problem. Due to low global regularity of the solution, classical superconvergence phenomenon for finite element methods disappears unless the discontinuity of the coefficient is resolved by partition. We show that immersed finite element solutions inherit all desir...

متن کامل

Partially Penalized Immersed Finite Element Methods For Elliptic Interface Problems

This article presents new immersed finite element (IFE) methods for solving the popular second order elliptic interface problems on structured Cartesian meshes even if the involved interfaces have nontrivial geometries. These IFE methods contain extra stabilization terms introduced only at interface edges for penalizing the discontinuity in IFE functions. With the enhanced stability due to the ...

متن کامل

Partially Penalized Immersed Finite Element Methods for Parabolic Interface Problems

We present partially penalized immersed finite element methods for solving parabolic interface problems on Cartesian meshes. Typical semi-discrete and fully discrete schemes are discussed. Error estimates in an energy norm are derived. Numerical examples are provided to support theoretical analysis.

متن کامل

Superconvergence of partially penalized immersed finite element methods

The contribution of this paper contains two parts: first, we prove a supercloseness result for the partially penalized immersed finite element (PPIFE) methods in [T. Lin, Y. Lin, and X. Zhang, SIAM J. Numer. Anal., 53 (2015), 1121–1144]; then based on the supercloseness result, we show that the gradient recovery method proposed in our previous work [H. Guo and X. Yang, J. Comput. Phys., 338 (20...

متن کامل

Strong Superconvergence of Finite Element Methods for Linear Parabolic Problems

We study the strong superconvergence of a semidiscrete finite element scheme for linear parabolic problems on Q Ω × 0, T , where Ω is a bounded domain in R d ≤ 4 with piecewise smooth boundary. We establish the global two order superconvergence results for the error between the approximate solution and the Ritz projection of the exact solution of ourmodel problem inW1,p Ω and Lp Q with 2 ≤ p < ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Computational Mathematics

سال: 2017

ISSN: 1019-7168,1572-9044

DOI: 10.1007/s10444-016-9507-7